24,994 research outputs found

    The law of action and reaction for the effective force in a nonequilibrium colloidal system

    Full text link
    We study a nonequilibrium Langevin many-body system containing two 'test' particles and many 'background' particles. The test particles are spatially confined by a harmonic potential, and the background particles are driven by an external driving force. Employing numerical simulations of the model, we formulate an effective description of the two test particles in a nonequilibrium steady state. In particular, we investigate several different definitions of the effective force acting between the test particles. We find that the law of action and reaction does not hold for the total mechanical force exerted by the background particles, but that it does hold for the thermodynamic force defined operationally on the basis of an idea used to extend the first law of thermodynamics to nonequilibrium steady states.Comment: 13 page

    Single-molecule stochastic resonance

    Full text link
    Stochastic resonance (SR) is a well known phenomenon in dynamical systems. It consists of the amplification and optimization of the response of a system assisted by stochastic noise. Here we carry out the first experimental study of SR in single DNA hairpins which exhibit cooperatively folding/unfolding transitions under the action of an applied oscillating mechanical force with optical tweezers. By varying the frequency of the force oscillation, we investigated the folding/unfolding kinetics of DNA hairpins in a periodically driven bistable free-energy potential. We measured several SR quantifiers under varied conditions of the experimental setup such as trap stiffness and length of the molecular handles used for single-molecule manipulation. We find that the signal-to-noise ratio (SNR) of the spectral density of measured fluctuations in molecular extension of the DNA hairpins is a good quantifier of the SR. The frequency dependence of the SNR exhibits a peak at a frequency value given by the resonance matching condition. Finally, we carried out experiments in short hairpins that show how SR might be useful to enhance the detection of conformational molecular transitions of low SNR.Comment: 11 pages, 7 figures, supplementary material (http://prx.aps.org/epaps/PRX/v2/i3/e031012/prx-supp.pdf

    Ising pyrochlore magnets: Low temperature properties, ice rules and beyond

    Get PDF
    Pyrochlore magnets are candidates for spin-ice behavior. We present theoretical simulations of relevance for the pyrochlore family R2Ti2O7 (R= rare earth) supported by magnetothermal measurements on selected systems. By considering long ranged dipole-dipole as well as short-ranged superexchange interactions we get three distinct behaviours: (i) an ordered doubly degenerate state, (ii) a highly disordered state with a broad transition to paramagnetism, (iii) a partially ordered state with a sharp transition to paramagnetism. Thus these competing interactions can induce behaviour very different from conventional ``spin ice''. Closely corresponding behaviour is seen in the real compounds---in particular Ho2Ti2O7 corresponds to case (iii) which has not been discussed before, rather than (ii) as suggested earlier.Comment: 5 pages revtex, 4 figures; some revisions, additional data, additional co-authors and a changed title. Basic ideas of paper remain the same but those who downloaded the original version are requested to get this more complete versio

    Global information balance in quantum measurements

    Full text link
    We perform an information-theoretical analysis of quantum measurement processes and obtain the global information balance in quantum measurements, in the form of a closed chain equation for quantum mutual entropies. Our balance provides a tight and general entropic information-disturbance trade-off, and explains the physical mechanism underlying it. Finally, the single-outcome case, that is, the case of measurements with post-selection, is briefly discussed.Comment: Final version to appear on Physical Review Letter

    Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Get PDF
    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults

    Two quantum analogues of Fisher information from a large deviation viewpoint of quantum estimation

    Get PDF
    We discuss two quantum analogues of Fisher information, symmetric logarithmic derivative (SLD) Fisher information and Kubo-Mori-Bogoljubov (KMB) Fisher information from a large deviation viewpoint of quantum estimation and prove that the former gives the true bound and the latter gives the bound of consistent superefficient estimators. In another comparison, it is shown that the difference between them is characterized by the change of the order of limits.Comment: LaTeX with iopart.cls, iopart12.clo, iopams.st

    Hydrogen Atom in Relativistic Motion

    Full text link
    The Lorentz contraction of bound states in field theory is often appealed to in qualitative descriptions of high energy particle collisions. Surprisingly, the contraction has not been demonstrated explicitly even in simple cases such as the hydrogen atom. It requires a calculation of wave functions evaluated at equal (ordinary) time for bound states in motion. Such wave functions are not obtained by kinematic boosts from the rest frame. Starting from the exact Bethe-Salpeter equation we derive the equal-time wave function of a fermion-antifermion bound state in QED, i.e., positronium or the hydrogen atom, in any frame to leading order in alpha. We show explicitly that the bound state energy transforms as the fourth component of a vector and that the wave function of the fermion-antifermion Fock state contracts as expected. Transverse photon exchange contributes at leading order to the binding energy of the bound state in motion. We study the general features of the corresponding fermion-antifermion-photon Fock states, and show that they do not transform by simply contracting. We verify that the wave function reduces to the light-front one in the infinite momentum frame.Comment: 20 pages, 10 figures; v2: some changes in discussion, accepted for publication in Phys.Rev.

    U(n) Spectral Covers from Decomposition

    Full text link
    We construct decomposed spectral covers for bundles on elliptically fibered Calabi-Yau threefolds whose structure groups are S(U(1) x U(4)), S(U(2) x U(3)) and S(U(1) x U(1) x U(3)) in heterotic string compactifications. The decomposition requires not only the tuning of the SU(5) spectral covers but also the tuning of the complex structure moduli of the Calabi-Yau threefolds. This configuration is translated to geometric data on F-theory side. We find that the monodromy locus for two-cycles in K3 fibered Calabi-Yau fourfolds in a stable degeneration limit is globally factorized with squared factors under the decomposition conditions. This signals that the monodromy group is reduced and there is a U(1) symmetry in a low energy effective field theory. To support that, we explicitly check the reduction of a monodromy group in an appreciable region of the moduli space for an E6E_6 gauge theory with (1+2) decomposition. This may provide a systematic way for constructing F-theory models with U(1) symmetries.Comment: 41 pages, 14 figures; v2: minor improvements and a reference adde
    corecore